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Decision Trees
Decision trees is one of the simplest methods for supervised
learning. It can be applied to both regression & classification.

Example:
A decision tree for deciding whether to wait for a place at
restaurant. Target WillWait can be True or False.
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Decision Trees (cont.)

At each node of a tree, a test is applied which sends the query
sample down one of the branches of the node.

This continues until the query sample arrives at a terminal or leaf
node. Each leaf node is associated with a value: a class label in
classification, or a numeric value in regression.

The value of the leaf node reached by the query sample is returned
as the output of the tree.

Example:
Patrons = Full, Price = Expensive, Rain = Y es,
Reservation = Y es, Hungry = Y es, Fri = No, Bar = Y es,
Alternate = Y es, Type = Thai, WaitEstimate = 0− 10

What is WillWait?



The Training Set

Training set for a decision tree (each row is a sample):

An attribute or feature is a characteristic of the situation that we
can measure.

The samples could be observations of previous decisions taken.



The Training Set (cont.)

We can re-arrange the samples as follows:
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i.e., each sample consists of a 10-dimensional vector xi of discrete
feature values, and a target label yi which is Boolean.



Learning Decision Trees from Observations

Trivial solution for building decision trees — construct a path to a
leaf for each sample.

! Merely memorising the observations (not extracting any
patterns from the data).

! Produces a consistent but excessively complex hypothesis
(recall Occam’s Razor).

! Unlikely to generalise well to new/unseen observations.

We should aim to build the smallest tree that is consistent with the
observations. One way to do this is to recursively test the most

important attributes first.



Learning Decision Trees from Observations (cont.)

Example:

Test Patrons or Type first?
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Learning Decision Trees from Observations (cont.)

Example:

Test Patrons or Type first?

None Some Full

Patrons?

French Italian Thai Burger

Type?

An important (or good) attribute splits samples into groups that
are (ideally) all positive or negative.

Therefore Patrons is more important than Type.

Testing good attributes first allows us to minimise the tree depth.



Learning Decision Trees from Observations (cont.)

After the first attribute splits the samples, the remaining samples
become decision tree problems themselves (or subtrees) but with
less samples and one less attribute, e.g.,

This suggests a recursive approach to build decision trees.



Decision Tree Learning (DTL) Algorithm

Aim: Find the smallest tree consistent with the training samples.
Idea: Recursively choose “most significant” attribute as root of
(sub)tree.



Decision Tree Learning (DTL) Algorithm (cont.)

Four basic underlying ideas of the algorithm:

1. If there are some positive and negative samples, then choose
the best attribute to split them, e.g., test Patrons at the
root.



Decision Tree Learning (DTL) Algorithm (cont.)

2. If all the remaining samples are all positive or all negative, we
have reached a leaf node. Assign label as positive (or
negative), e.g.,



Decision Tree Learning (DTL) Algorithm (cont.)

3. If there are no samples left, it means that no such sample has
been observed. Return a default value calculated from the
majority classification at the node’s parent, e.g.,



Decision Tree Learning (DTL) Algorithm (cont.)

4. If there are no attributes left, but both positive and negative
samples, it means that these samples have exactly the same
feature values but different classifications. This may happen
because

! some of the data could be incorrect, or
! the attributes do not give enough information to describe the

situation fully (i.e. we lack other useful attributes), or
! the problem is truly non-deterministic, i.e., given two samples

describing exactly the same conditions, we may make different
decisions.

Solution: Call it a leaf node and assign the majority vote as
the label.



Decision Tree Learning (DTL) Algorithm (cont.)

! Result of applying DTL on the observations:
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! Simpler than the tree shown in Page 2.



Choosing the Best Attribute

We need a measure of “good” and “bad” for attributes.

One way to do us is to compute the information content at a
node, i.e. at node R

I(R) =
L
∑

i=1

−P (ci) log2 P (ci)

where {c1, . . . , cL} are the L class labels present at the node, and
P (ci) is the probability of getting class ci at the node.

A unit of information is called a “bit”.



Choosing the Best Attribute (cont.)

Example:

At the root node of the restaurant problem, c1 = True,
c2 = False and there are 6 True samples and 6 False samples.

Therefore

P (c1) =
no. of samples = c1
total no. of samples

=
6

6 + 6
= 0.5

P (c2) =
no. of samples = c2
total no. of samples

=
6

6 + 6
= 0.5

I(Root) = −0.5× log2 0.5 − 0.5 × log2 0.5 = 1 bit

In general, the amount of information will be maximum when all
classes are equally likely, and be minimum when the node is
homogeneous (all samples have the same labels).

What are the maximum and minimum attainable values for
information content?



Choosing the Best Attribute (cont.)

An attribute A will divide the samples at a node into different
subsets (or child nodes) EA=v1 , . . . , EA=vM , where A has M
distinct values {v1, . . . , vM}.

Generally each subset EA=vi will have samples of different labels,
so if we go along that branch we will need an additional of
I(EA=vi) bits of information.

Example:

In the restaurant problem, at the branch Patrons = Full of the
root node, we have c1 = True with 2 samples and c2 = False

with 4 samples, therefore

I(EPatrons=Full) = −
1

3
log2

1

3
−
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3
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3
= 0.9183 bits



Choosing the Best Attribute (cont.)

Denote by P (A = vi) as the probability of a sample to follow

the branch A = vi.

Example:

For the restaurant problem, at the root node

P (Patrons = Full) =
No. of samples where Patrons = Full

No. of samples at the root node

=
6

12
= 0.5



Choosing the Best Attribute (cont.)

After testing attribute A, we need a remainder of

Remainder(A) =
M
∑

i=1

P (A = vi)I(EA=vi)

bits to classify the samples.

The information gain in testing attribute A is the difference
between the original information content and the new information
content, i.e.

Gain(A) = I(R)−Remainder(A)

= I(R)−
M
∑

i=1

P (A = vi)I(EA=vi)

where {EA=v1 , . . . , EA=vM } are the child nodes of R after testing
attribute A.



Choosing the Best Attribute (cont.)

The key idea behind the CHOOSE-ATTRIBUTE function in the DTL
algorithm is to choose the attribute that gives the maximum

information gain.

Example:

In the restaurant problem, at the root node

Gain(Patrons) = 1− 2
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≈ 0.5409 bits.

With similar calculations,

Gain(Type)=0 (Try this yourself!!!)

confirming that Patrons is a better attribute than Type.

In fact at the root Patrons gives the highest information gain.



Concluding Remarks

A different point of view is to regard I(node) as a measure of
impurity. The more “mixed” the samples are at a node (i.e. has
equal proportions of all class labels), the higher the impurity value.
On the other hand, a homogeneous node (i.e. has samples of one
class only) will have zero impurity.

The Gain(A) value can thus be viewed as the amount of

reduction in impurity if we split according to A.

This affords the intuitive idea that we grow trees by recursively

trying to obtain leaf nodes which are as pure as possible.


